LOW PRESSURE CARBON DIOXIDE FIRE SUPPRESSION SYSTEM

SYSTEMS DATA SHEET

FEATURES
- FM Approved
- Wide Range of CO₂ Storage Units
 - Available (3/4 Ton to 60 Ton Capacity)
- Hydraulic Program For Piping Design
- CO₂ Storage Units Are Saddle Mount
- Low Profile Design

APPLICATIONS
Typical hazards protected by carbon dioxide systems are:
- Printing Presses
- Transformer Vaults/Electrical Cabinets
- Open Pits
- Dip Tanks
- Rolling Mills
- Ovens
- Coating Machines
- Process Equipment
- Exhaust and Fume Handling Systems
- Flammable Gas or Liquid Storage Areas
- Generators
- Inerting Applications

DESCRIPTION
The ANSUL Preferred Commercial Low Pressure CO₂ Fire Suppression System is designed to meet the requirements of NFPA 12, Standard on Carbon Dioxide Extinguishing Systems. The system consists of a low pressure storage unit, master valves, selector valves, manual and automatic controls, distribution nozzles, alarms, indicators, and supervisory devices as required to maintain a supply of carbon dioxide in a stand-by fire ready state, and to provide effective distribution of agent on demand.

The low pressure system consists of liquid CO₂ stored in an ASME coded pressure vessel which is equipped with its own refrigeration system. The pressure within the pressure vessel is maintained near 300 psi (20.7 bar) by maintaining the internal temperature at approximately 0 °F (–17 °C). A manually operated tank shut-off valve, which is used to isolate the supply from the distribution network, is fitted to the storage unit at the time of installation. Low pressure storage units are available in sizes from 3/4 ton up to 60 ton capacity. Distribution of CO₂ is accomplished through a selector valve assembly which consists of either a ball or butterfly valve, a spring return pneumatic valve operator and a three way electrically operated solenoid valve. A listed and approved releasing control panel is used to provide automatic detection and control.

CO₂ vapor from the storage container is regulated to 100 psi (6.9 bar) and piped to the inlet of the three-way valve. While the master/selector valve is in a stand-by fire ready mode, the pneumatic valve operator actuation port is open to atmosphere through the exhaust port of the three-way valve and the master/selector valve is closed. Upon receipt of an electrical actuation signal from the releasing panel, the three way solenoid valve operates, allowing actuation pressure to pass to the pneumatic valve operator. This opens the valve, allowing the CO₂ extinguishing agent to flow into the protected area. When the discharge timing cycle is complete, the electrical actuation signal is removed. Deactivation of the actuation signal returns the three-way solenoid valve to its stand-by fire ready position, exhausting the pneumatic operator valve and allowing the selector valve to close.

COMPONENT DESCRIPTION
CO₂ Low Pressure Storage Unit – The low pressure storage unit consists of a pressure vessel built to the ASME code for unfired pressure vessels. The storage unit is available in sizes from 3/4 ton to 60 ton. The pressure vessel has outlets for filling, for supplying CO₂ vapor to the system controls, and a large outlet for discharging CO₂ into the protected hazard. The pressure vessel is covered with four inches of insulation. The insulation is covered with an aluminum vapor barrier. The pressure vessel is provided in a saddle mount configuration.

The pressure vessel is equipped with safety relief valves in accordance with ASME requirements. In addition to the safety relief valve required by ASME, the pressure vessel is also supplied with an auxiliary safety device known as a “bleeder” valve.

In the upper part of the pressure vessel, refrigerant evaporator coils serve to cool the stored CO₂. A refrigeration unit supplies low pressure refrigerant to the evaporator coils inside the pressure vessel. The refrigeration extracts heat from the CO₂ vapor which surrounds the coils. The refrigeration compressor cycle is controlled by a pressure switch which monitors the pressure of the CO₂ within the pressure vessel. Pressure of the CO₂
Discharge Valves – Valves which control the discharge of CO₂ into the protected space(s) can be arranged in one of two configurations: master/selector or selector. Operation of the valve(s) is done either pneumatically, electro-pneumatically, or manually.

MASTER/SELECTOR: There are two discharge valves in the flow path between the low pressure storage unit outlet and the discharge nozzles. Starting from the storage unit, the first valve is the “master” valve. The valve downstream of the master valve is the “selector” valve. In most master/selector valve systems, one master valve will serve several selector valves. The advantage to this type of configuration is that it permits running a single pipe run from the storage unit to several distant hazards. The savings in installation cost by running a single pipe run rather than multiple individual pipe runs may more than offset the cost of the master valve and controls.

SELECTOR: There is a single discharge valve in the flow path between the low pressure storage unit outlet and the discharge nozzles. This configuration is typically used for multiple protected hazards which are 1) Close to the low pressure storage unit. 2) Widely separated from other protected hazards. Cost of the equipment is less than that of a master/selector arrangement, but installation may be greater if several large diameter pipe runs must be run from the low pressure storage unit to the hazards.

Hose Reels – In addition to the fixed pipe systems, hose reels can be utilized off a low pressure storage unit. Hose reels consist of a corrosion resistant painted reel with several different lengths of 1 inch hose available.

CO₂ Agent – Carbon dioxide is an effective fire extinguishing agent that can be used on many types of fires. It is effective for surface fires, such as flammable liquids and most solid combustible materials. It expands at a ratio of 450 to 1 by volume. For fire suppression purposes, the discharge is designed to raise the carbon dioxide concentration in the hazard. This displaces the air containing oxygen which supports combustion, and results in fire extinguishment. Other attributes are its high degree of effectiveness, its excellent thermal stability, and its freedom from deterioration. It is electrically non-conductive, and leaves no residue to clean up after discharge.

Nozzles – Nozzles are designed to direct the discharge of CO₂ in the hazard area. The system design specifies the orifice size to be used for proper flow rate and distribution pattern. The nozzle selection depends on the hazard and location to be protected. Standard nozzles are painted red or are natural brass, depending on the type. All are corrosion resistant and, where the hazard warrants, some can be equipped with blow-off caps or sealing discs.

APPROVALS
Ansul Preferred Low Pressure Carbon Dioxide Systems are designed to meet the requirements of NFPA 12 “Standard on Carbon Dioxide Extinguishing Systems.” They are approved by Factory Mutual (FM).

ORDERING INFORMATION
Order all system components through your local authorized Ansul Preferred Distributor.
1.0 GENERAL

1.1 References

1.1.1 Factory Mutual Research Corporation (FMRC) Approved

1.1.2 National Fire Protection Association (NFPA)
 1.1.2.1 NFPA Standard 12

1.2 Submittals

1.2.1 Submit two sets of manufacturer’s component sheets

1.2.2 Submit two sets of piping design drawing

1.3 System Description

1.3.1 The system shall be an automatic fire suppression system using low pressure carbon dioxide extinguishing agent.

1.3.2 The system shall be capable of suppressing fires in the following industrial related areas: Printing Presses, Transformer Vaults/Electrical Cabinets, Open Pits, Dip Tanks, Rolling Mills, Ovens, Coating Machines, Process Equipment, Exhaust and Fume Handling Systems, Flammable Gas or Liquid Storage Areas, Generators and Inerting Applications.

1.3.3 The system shall be the engineered type with guidelines established by the manufacturer and having a computer aided flow program to determine pipe and nozzle requirements.

1.3.4 The basic system shall consist of an agent storage unit, detection and control panel, discharge nozzles, and the necessary master and selector valves required. Additional components shall be available for shutting down equipment and signalling system discharge. The system shall be fixed nozzle type or hose reel type or a combination of both. The system shall be capable of total flooding or local application design.

1.3.5 The system shall be installed and serviced by personnel trained by the manufacturer.

1.4 Quality Control

1.4.1 Manufacturer: The Low Pressure Carbon Dioxide System shall be manufactured by a company with at least five years experience in the design and manufacture of engineered fire suppression systems.

1.5 Warranty

1.5.1 The low pressure CO₂ system components shall be warranted for one (1) year from date of delivery.

1.6 Delivery

1.6.1 Packaging: All system components shall be securely packaged to provide protection during shipment.

1.7 Environmental Conditions

1.7.1 The low pressure storage unit shall be capable of operating in a temperature range of –10 °F to +120 °F (–23 °C to +49 °C).

2.0 PRODUCT

2.1 Manufacturer

2.1.1 Ansul Preferred CO₂, 9800 Harwood Ct., Fairfield, OH 45014, Telephone (513) 860-0405.

2.2 Components

2.2.1 CO₂ Agent: The agent shall be a clean, dry, non-corrosive, non-damaging, non-deteriorating chemical. It shall dilute the oxygen content of the protected hazard to a point where it will not support combustion.

2.2.2 Low Pressure CO₂ Storage Unit: The storage unit shall be built to the ASME code for unfired pressure vessels. The unit shall be insulated with four inches of insulation and covered with an aluminum vapor barrier. The unit shall be equipped with all necessary safety relief devices. The unit’s refrigeration system shall be capable of maintaining the liquid CO₂ at a storage pressure of 300 psi (20.7 bar).

2.2.3 Valves: Valves shall be capable of being operated either manually, pneumatically, or electro-pneumatically. They shall be either ball or butterfly design.

2.2.4 Detection System: The detection system shall be listed and approved by UL and FM and approved by the manufacturer for use with the low pressure CO₂ system.

2.2.5 Nozzles: Nozzles shall be designed to direct the discharge of carbon dioxide in a liquid or gaseous state. The orifice size shall be determined by the flow rate and system design required. Nozzles shall be corrosion resistant and available in natural brass, zinc plated steel, or painted red.

2.2.6 Piping: Distribution and control piping shall meet the requirements stated in the manufacturer’s listed installation manual.

3.0 IMPLEMENTATION

3.1 Installation

3.1.1 The Low Pressure CO₂ fire suppression system shall be designed, installed, inspected, maintained, and recharged in accordance with the manufacturer’s approved instruction manual.

3.1.2 Training: Training shall be conducted by representatives of the manufacturer.
Dimensional Information Chart (E-Style Saddle Mounted Vessel)

<table>
<thead>
<tr>
<th>Tank Capacity (Tons)</th>
<th>Part No.</th>
<th>A: Length ft.-in. (m)</th>
<th>B: Width ft.-in. (m)</th>
<th>C: Height ft.-in. (m)</th>
<th>Empty Weight lb. (kg)</th>
<th>Weight of CO₂ lb. (kg)</th>
<th>Total Volume gal. (L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>.75</td>
<td>1-0075-0</td>
<td>7-11 (2.4)</td>
<td>4-3 (1.3)</td>
<td>6-5 (1.9)</td>
<td>1200 (544)</td>
<td>1500 (680)</td>
<td>192 (728)</td>
</tr>
<tr>
<td>1.5</td>
<td>1-0150-0</td>
<td>11-8 (3.6)</td>
<td>4-3 (1.3)</td>
<td>6-5 (1.9)</td>
<td>3200 (1452)</td>
<td>3000 (1361)</td>
<td>705 (2669)</td>
</tr>
<tr>
<td>2</td>
<td>1-0200-0</td>
<td>13-6 (4.1)</td>
<td>4-3 (1.3)</td>
<td>6-5 (1.9)</td>
<td>3500 (1588)</td>
<td>4000 (1814)</td>
<td>513 (1941)</td>
</tr>
<tr>
<td>2.75</td>
<td>1-0275-0</td>
<td>15-8 (4.8)</td>
<td>4-3 (1.3)</td>
<td>6-5 (1.9)</td>
<td>4000 (1814)</td>
<td>5500 (2495)</td>
<td>705 (2669)</td>
</tr>
<tr>
<td>3.75</td>
<td>1-0375-0</td>
<td>11-10 (3.6)</td>
<td>5-10 (1.8)</td>
<td>8-6 (2.6)</td>
<td>7500 (3402)</td>
<td>7500 (3402)</td>
<td>935 (3539)</td>
</tr>
<tr>
<td>6</td>
<td>1-0600-0</td>
<td>15-10 (4.8)</td>
<td>5-10 (1.8)</td>
<td>8-6 (2.6)</td>
<td>9000 (4082)</td>
<td>12000 (5443)</td>
<td>1541 (5833)</td>
</tr>
<tr>
<td>8</td>
<td>1-0800-0</td>
<td>19-9 (5.6)</td>
<td>5-10 (1.8)</td>
<td>8-6 (2.6)</td>
<td>10200 (4627)</td>
<td>16000 (7258)</td>
<td>2057 (7787)</td>
</tr>
<tr>
<td>10</td>
<td>1-1000-0</td>
<td>23-4 (6.7)</td>
<td>5-10 (1.8)</td>
<td>8-6 (2.6)</td>
<td>11500 (5216)</td>
<td>20000 (8976)</td>
<td>2543 (9626)</td>
</tr>
<tr>
<td>12</td>
<td>1-1200-0</td>
<td>26-5 (7.9)</td>
<td>5-10 (1.8)</td>
<td>8-6 (2.6)</td>
<td>12650 (5738)</td>
<td>24000 (10886)</td>
<td>3082 (11667)</td>
</tr>
<tr>
<td>14</td>
<td>1-1400-0</td>
<td>19-6 (5.7)</td>
<td>7-4 (2.2)</td>
<td>9-8 (2.9)</td>
<td>14000 (6350)</td>
<td>28000 (12700)</td>
<td>3598 (13620)</td>
</tr>
<tr>
<td>18</td>
<td>1-1800-0</td>
<td>25-0 (6.9)</td>
<td>7-4 (2.2)</td>
<td>9-8 (2.9)</td>
<td>16800 (7621)</td>
<td>36000 (16330)</td>
<td>4593 (17386)</td>
</tr>
<tr>
<td>22</td>
<td>1-2200-0</td>
<td>28-6 (8.7)</td>
<td>7-4 (2.2)</td>
<td>9-8 (2.9)</td>
<td>20500 (9299)</td>
<td>44000 (19958)</td>
<td>5641 (21353)</td>
</tr>
<tr>
<td>26</td>
<td>1-2600-0</td>
<td>32-6 (9.9)</td>
<td>7-4 (2.2)</td>
<td>9-8 (2.9)</td>
<td>23500 (10660)</td>
<td>52000 (23587)</td>
<td>6667 (25237)</td>
</tr>
<tr>
<td>30</td>
<td>1-3000-0</td>
<td>36-6 (11.1)</td>
<td>7-4 (2.2)</td>
<td>9-8 (2.9)</td>
<td>26500 (12020)</td>
<td>60000 (27216)</td>
<td>7692 (29118)</td>
</tr>
<tr>
<td>34</td>
<td>1-3400-0</td>
<td>40-6 (12.3)</td>
<td>7-4 (2.2)</td>
<td>9-8 (2.9)</td>
<td>29500 (13380)</td>
<td>68000 (30845)</td>
<td>8718 (33000)</td>
</tr>
<tr>
<td>38</td>
<td>1-3800-0</td>
<td>44-6 (13.6)</td>
<td>7-4 (2.2)</td>
<td>9-8 (2.9)</td>
<td>33000 (14970)</td>
<td>76000 (34474)</td>
<td>9744 (36884)</td>
</tr>
<tr>
<td>42</td>
<td>1-4200-0</td>
<td>48-6 (14.8)</td>
<td>7-4 (2.2)</td>
<td>9-8 (2.9)</td>
<td>35000 (15876)</td>
<td>84000 (38102)</td>
<td>10770 (40766)</td>
</tr>
<tr>
<td>46</td>
<td>1-4600-0</td>
<td>52-6 (16.0)</td>
<td>7-4 (2.2)</td>
<td>9-8 (2.9)</td>
<td>37500 (17010)</td>
<td>92000 (41731)</td>
<td>11795 (44650)</td>
</tr>
<tr>
<td>50</td>
<td>1-5000-0</td>
<td>56-6 (17.2)</td>
<td>7-4 (2.2)</td>
<td>9-8 (2.9)</td>
<td>40000 (18144)</td>
<td>100000 (45360)</td>
<td>12820 (48530)</td>
</tr>
<tr>
<td>54</td>
<td>1-5400-0</td>
<td>60-6 (18.4)</td>
<td>7-4 (2.2)</td>
<td>9-8 (2.9)</td>
<td>41600 (18870)</td>
<td>108000 (48990)</td>
<td>13846 (52413)</td>
</tr>
<tr>
<td>58</td>
<td>1-5800-0</td>
<td>64-6 (19.7)</td>
<td>7-4 (2.2)</td>
<td>9-8 (2.9)</td>
<td>43200 (19595)</td>
<td>116000 (52618)</td>
<td>14872 (56296)</td>
</tr>
<tr>
<td>60</td>
<td>1-6000-0</td>
<td>66-6 (20.3)</td>
<td>7-4 (2.2)</td>
<td>9-8 (2.9)</td>
<td>45000 (20412)</td>
<td>120000 (54432)</td>
<td>15385 (58237)</td>
</tr>
</tbody>
</table>